Adaptive Image Segmentation Using Multi-Objective Evaluation and Hybrid Search Methods
نویسنده
چکیده
This paper describes an approach for image segmentation that relies on learning from experience to adapt and improve the segmentation performance. The adaptive image segmentation system incorporates a feedback loop consisting of a machine learning subsystem, an image segmentation algorithm, and an evaluation component which determines segmentation quality. The machine learning component is based on genetic adaptation and uses (separately) a pure genetic algorithm (GA) and hybrid of GA and hill climbing (HC). When the learning subsystem is based on pure genetics, the corresponding evaluation component is based on a vector of evaluation criteria. For the hybrid case, the system employs a scalar evaluation measure which is a weighted combination of the different criteria. Experimental results for pure genetic and hybrid search methods are presented using a representative database of outdoor TV imagery.
منابع مشابه
MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملImage Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing
Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...
متن کاملA Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images
Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...
متن کاملروش جدید تقطیع تصویر بر مبنای خوشهبندی فازی مبتنی بر تکامل تفاضلی چندهدفه
Image segmentation is one of the most important and difficult steps in machine vision problems and achieving the desired results often requires satisfaction of different objectives. One approach to face this situation uses multi-objective fuzzy clustering of pixels in the feature space. This paper proposes a new strategy for search within the family of multi-objective differential evolution alg...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کامل